

# FICHE TECHNIQUE

## REFERENCE: KSIL UL

### **DESIGNATION:**

Silicone cellulaire retardateur de flamme, extrusion - Plaques

### **TEMPERATURE UTILISATION:**

-60°C à 230°C

### **DISPONIBILITES**

La gamme des silicones cellulaires « UL » est disponible sous forme d'extrusion, de joints et de feuilles. Ces produits peuvent être autocollants, découpés en bandes et/ou perforés selon votre demande. Cette gamme de produit convient tout particulièrement à la découpe de joints ou l'on demande une résistance à de fortes températures; et ou un silicone mou et déformable est conseillé. Une large gamme de couleur standard est disponible, et nous avons d'autre part la capacité de fabriquer les couleurs identiques á vos besoins. Disponible en rouleaux standard de 1m de large nous nous adaptons à votre demande.

### **SPECIFICATIONS**

Ces produits ont été précisement formulés pour satisfaire aux éxigences de la norme au feu UL94V0. Ils répondent donc par définition aux normes UL94 V1, V2.

Ces produits sont ignifuges et correspondent à l'approbation FAR 25.853 (a)(1)(i) (a)(1)(ii), tests verticaux et (a)(1)(iv), (a)(1)(v) tests horizontaux.

### CARACTERISTIQUES GENERALES DU SILICONE

Seuil de rupture  $-80^{\circ}$ C ASTM D746 Oxygène limité 23.2% BS 2872 Part 1 Conductivité thermale  $6.4 \times 10^{-2} \, \text{W.m}^{-1} \text{.K}^{-1}$  BS 874 Part 2

Résistance aux radiations >10<sup>5</sup> Grays (10<sup>7</sup> Rads) typical

# Viechanical Properti

| Property                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kSil <sup>TM</sup><br>Spec                                    | kSil™UL200<br>c Typical<br>its Value | kSil <sup>TM</sup>                                                                                                                                                                                               | kSil™UL250 Typical S Value                                   | kSil <sup>TM</sup><br>Spec                                | kSil™UL350<br>c Typical<br>its Value | kSil <sup>TM</sup><br>Spec                           | kSil™UL400<br>ic Typical                                                                                                   | Test Method                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *Density                                                                                                                                                                                                                                               | kg.m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 ±40<br>12.5±2.5                                           | 195<br>12.2                          | 250 ±40<br>15.6±2.5                                                                                                                                                                                              | 256<br>16.0                                                  | 300 ±40<br>18.7±2.5                                       | 320<br>20.0                          | 400 ±40<br>25.0±2.5                                  | 400                                                                                                                        | BSENISO 845                                                                                                                                                                                                                        |
| *** Compression Stress<br>40% strain                                                                                                                                                                                                                   | kPa<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 ±20<br>5.8±2.9                                             | 40<br>5.8                            | 80 ± 30<br>11.6 ±4.4                                                                                                                                                                                             | 80<br>11.0                                                   | 120 ± 40<br>17.4 ±5.8                                     | 120<br>17.4                          | 170 ±40 165<br>24.7 ±5.8 24                          | 165<br>24                                                                                                                  | BSENISO 3386 part1, 2                                                                                                                                                                                                              |
| Tensile Strength                                                                                                                                                                                                                                       | MPa<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 min.<br>72                                                | 0.6<br>87                            | 0.5 min.<br>72                                                                                                                                                                                                   | 0.6<br>87                                                    | 0.75min<br>108                                            | 0.6<br>87                            | 0.75min.<br>108                                      | 0.6<br>87                                                                                                                  | BSENISO 1798                                                                                                                                                                                                                       |
| Elongation to Failure                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 min.                                                       | 140                                  | 100 min.                                                                                                                                                                                                         | 145                                                          | 110min.                                                   | 120                                  | 110min.                                              | 120                                                                                                                        | BSENISO 1798                                                                                                                                                                                                                       |
| Compression Set 50% compression 24 hours recovery. 22 hours @ 70°C (158°C)                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 max                                                        | 15                                   | 15 max                                                                                                                                                                                                           | 10                                                           | 15max.                                                    | 10                                   | 15max                                                | 10                                                                                                                         | BSENISO 1856                                                                                                                                                                                                                       |
| 22 hours @ 100°C (212°F)  Extra Information                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 max                                                        | 15                                   | 15 max                                                                                                                                                                                                           | 10                                                           | 15max.                                                    | 10                                   | 15max.                                               | 10                                                                                                                         | BSENISO 1856                                                                                                                                                                                                                       |
| * Density measured on 25 mm diameter cord sample. The density of samples of different sizes will be different from that stated here.  ** Hardness measured on 10 mm thick samples. At less than 10mm the measured hardness will increase with density. | om diameter cor<br>ent sizes will be a<br>must be a | d sample. The different from t ples. At less th with density. |                                      | The Shore A values are provided as a guideline for comparison to solid materials and as such are not designed for use in specifications.  *** Compression Stress measured on samples as defined in BSENISO 3386. | es are providid materials in specificat Stress meas SO 3386. | ded as a guide<br>and as such a<br>ions:<br>sured on samp | line for<br>are not<br>bles as       | The con<br>dimensi<br>quoted<br>properti<br>technica | The compressive stre<br>dimensions, especiall<br>quoted here. For furtl<br>properties for other s<br>technical department. | The compressive stress on samples of different dimensions, especially thickness may vary from that quoted here. For further information about physical properties for other sample sizes, please contact the technical department. |